3 research outputs found

    Improving routing performance of multipath ad hoc on-demand distance vector in mobile add hoc networks.

    Get PDF
    The aim of this research is to improve routing fault tolerance in Mobile Ad hoc Networks (MANETs) by optimising mUltipath routing in a well-studied reactive and single path routing protocol known as Ad hoc On-demand Distance Vector (AODV). The research also aims to prove the effect of varying waiting time of Route Reply (RREP) procedure and utilising the concept of efficient routes on the performance of multipath extensions to AODV. Two novel multipath routing approaches are developed in this thesis as new extensions to AODV to optimise routing overhead by improving Route Discovery Process (RDP) and Route Maintenance Process (RMP) of multipath AODV. The first approach is a Iinkdisjoint multipath extension called 'Thresho)d efficient Routes in multipath AODV' (TRAODV) that optimises routing packets ~verhead by improving the RDP of AODV which is achieved by detecting the waiting time required for RREP procedure to receive a threshold number of efficient routes. The second approach is also a link-disjoint mUltipath extension called 'On-demand Route maintenance in Multipath AoDv' (ORMAD) which is an extension to TRAODV that optimises routing packets and delay overhead by improving the RMP of TRAODV. ORMAD applies the concepts of threshold waiting time and efficient routes to both phases RDP and RMP. It also applies RMP only to efficient routes which are selected in the RDP and when a route fails, it invokes a local repair procedure between upstream and downstream nodes of the broken link. This mechanism produces a set of alternative subroutes with less number of hops which enhances route efficiency and consequently minimises the routing overhead. TRAODV and ORMAD are implemented and evaluated against two existing multipath extensions to,AODV protocol and two traditional multipath protocols. The existing extensions to AODV used in the evaluation are a well-known protocol called Ad hoc On-demand Multipath Distance Vector (AOMDV) and a recent extension called Multiple Route AODV (MRAODV) protocol which is extended in this thesis to the new approach TRAODV while the traditional multipath protocols used in the evaluation are Dynamic Source Routing (DSR) and Temporally Ordered Routing Algorithm (TORA). Protocols are implemented using NS2 and evaluated under the same simulation environment in terms of four performance metrics; packet delivery fraction, average end-to-end delay, routing packets overhead, and throughput. Simulation results of TRAODV evaluation show that the average number of routes stored in a routing table of MRAODV protocol is always larger than the average number of routes in TRAODV. Simulation results show that TRAODV reduces the overall routing packets overhead compared to both extensions AOMDV and MRAODV, especially for large network size and high mobility. A vital drawback of TRAODV is that its performance is reduced compared to AOMDV and MRAODV in terms of average end-to-end delay. Additionally, TORA still outperforms TRAODV and the other extensions to AODV in terms of routing packets overhead. In order to overcome the drawbacks of TRAODV, ORMAD is developed by improving the RDP of TRAODV. The performance of ORMAD is evaluated against RREP waiting time using the idea of utilising the efficient routes in both phases RDP and RMP. Simulation results of ORMAD show that the performance is affected by varying the two RREP waiting times of both RDP and RMP in different scenarios. As shown by the simulation results, applying the short and long waiting times in both phases tends to less performance in terms of routing packets overhead while applying the moderate waiting times tends to better performance. ORMAD enhances routing packets overhead and the average end-to-end delay compared to TRAODV, especially in high mobility scenarios. ORMAD has the closest performance to TORA protocol in terms of routing packets overhead compared to ~M~a~M~OW . Relevant concepts are formalised for ORMAD approach and conducted as an analytical model in this thesis involving the\vhole process of multipath routing in AODV extensions. ORMAD analytical model describes how the two phases RDP and RMP interact with each other with regard to two performance metrics; total number of detected routes and Route Efficiency.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A survey on mobile payment applications and adopted theoretical models

    Get PDF
    Looking at the evolution of mobile phones, communications technology, and the Internet, one can see a clear shift in their usage in the past decade as mobile payment has become an important research area in the field of information technology. However, many financial institutions have adopted mobile payments. Except that only a limited number of clients are used. Several information systems theories/models have been proposed to examine the factors that could influence user adoption. However, the literature on the field is still in its infancy.  This paper, reviews and systematically analyzes the existing mobile payment acceptance and adoption literature that include UTAUT/TAM as a theoretical model to reveal mobile payment adoption research's current situation. The current study also provides a basis for future researchers in the mobile payment adoption study, as it provides a summary of related literature in the field, the models used, and the factors that have an impact on customer intent. Accordingly, the UTAUT, TAM models, with their extensions, are one of the models most used in examining and understanding the necessary factors that could influence mobile payment applications' adoption. The research revealed that 37 factors most commonly than a literature review on factors of adoption mobile payment applications since 2015. It was found that the factors of perceived trust and perceived risks are among the most critical factors in which the models are expanded, as they have an impact on the customer's acceptance of any new technology innovation. Therefore, emphasis must be placed on the factors of perceived trust and perceived risks to increase the applicability of UTAUT, TAM models to the mobile payment context

    A Comparison Study between RCCAR and Conventional Prediction Techniques for Resolving Context Conflicts in Pervasive Context-Aware Systems

    Get PDF
    In Pervasive computing environment, context-aware systems face many challenges to keep high quality performance. One-challenge faces context-aware systems is conflicted values come from different sensors because of different reasons. These conflicts affect the quality of context and as a result the quality of service as a whole. This paper is extension to our previous work, which is published in [15]. In our previous work, we presented an approach for resolving context conflicts in context-aware systems. This approach is could RCCAR (Resolving Context Conflicts Using Association Rules). RCCAR is implemented and verified well in [15], this paper conducts further experiments to explore the performance of RCCAR in comparison with the traditional prediction methods. The basic prediction methods that have been tested include simple moving average, weighted moving average, single exponential smoothing, double exponential smoothing, and ARMA. Experiments is conducted using Weka 3.7.7 and Excel; the results show better achievements for RCCAR against the conventional prediction methods. More researches are recommended to eliminate the cost of RCCAR
    corecore